光伏产业网

太阳能光伏行业
领先的资讯
当前位置: 光伏产业网 » 资讯 » 光伏要闻 » 正文

中国神华、中建材等央企“大玩家”开始搅动光伏业

核心提示:不知是必然又或是偶然,近两年来,在一个并不为业界之外所熟识的光伏细分技术路线——铜铟镓硒(CIGS)上,突然涌现出了一批拥护者,而其中甚至汇聚了如中国神华集团、中建材这般有实力搅动中国光伏产业格局的“大玩家”。
   不知是必然又或是偶然,近两年来,在一个并不为业界之外所熟识的光伏细分技术路线——铜铟镓硒(CIGS)上,突然涌现出了一批拥护者,而其中甚至汇聚了如中国神华集团、中建材这般有实力搅动中国光伏产业格局的“大玩家”。

  中国神华、中建材等央企“大玩家”开始搅动光伏业
 
  尤其是在2017年底-2018年初,各方势力在铜铟镓硒的布局不约而同地传来了新消息,据《证券日报》记者整理,2017年12月份,中国建材集团旗下凯盛集团宣布其位于安徽蚌埠的300MW的铜铟镓硒薄膜组件产线正式投产;同样在2017年12月份,同煤集团、大同市经济发展投资有限公司和汉能集团也宣布其共同投资的第一条50MW产线开始投产;而紧随其后,2018年1月份,神华集团、上海电气、德国光伏设备制造商ManzAG共同出资建设的重庆神华薄膜太阳能项目宣布正式开工,据称该项目设计年产能为306MW。
  
  一位接近重庆神华的不愿具名人士向《证券日报》记者表示,作为薄膜光伏技术路线之一的铜铟镓硒如此“受宠”,主要得益于大致三点:光伏的应用正在趋向与建筑结合、与建材融合,而这是薄膜光伏技术柔性、美观性所奠定的基础;从光电转化效率来看,铜铟镓硒实验室水平已经达到22.6%,所以其未来具有更大的增长潜力;之所以铜铟镓硒能够从砷化镓、碲化镉等薄膜路线中暂时胜出,获得更多青睐,则源于其生产成本控制、工艺等相对更为成熟。
  
  铜铟镓硒,赢得资本青睐
  
  值得一提的是,尽管上述“大玩家”的入局,使得铜铟镓硒愈发受到关注。但在我国光伏产业中,更多的资本、产能目前仍然集中于多晶硅、单晶硅路线。而对铜铟镓硒等薄膜技术的未来,各方也仍各持己见。
  
  不过,排除立场不同,较为客观的一种声音认为,单晶硅、多晶硅和薄膜在应用上各具优劣。比如从地面电站建设角度来看,在相等的装机容量要求下,单晶硅、多晶硅不需要更多的土地。但由于薄膜电池,特别是铜铟镓硒电池具有更好的弱光性(光照不足时,仍可发电)、温度不敏感性(对温度的变化不敏感,温度提高时,电池效能下降较小)。所以,在实际发电量上,薄膜优势则更为突出。
  
  早在2013年时,中组部“千人计划”国家特聘专家、时任北京低碳清洁能源研究所太阳能中心主任的陈颉博士曾向《证券日报》记者透露过他在意大利获得的实验数据:在单晶硅的电池效率为18%、非晶硅和铜铟镓硒(均属薄膜类)分别为7%、12.5%的基础上,进行同环境、同规模,为期一年的实验所得数据显示,单晶硅年发电为1.05度/瓦、非晶硅1.21度/瓦、铜铟镓硒则为1.37度/瓦。
  
  这意味着,在弱光性、温度不敏感性的作用下,薄膜电池能够获得了更高的发电量,而其中,铜铟镓硒尤为突出。
  
  除了应用上可能存在的上述优势外,包括铜铟镓硒在内的薄膜技术的崛起,也离不开政府的推动。据《证券日报》记者了解,在德国工业年鉴上可以查到这样一组数据:在2009年至2013年间,德国政府有超过60%财政资助是针对薄膜电池的,更有超过70%的研究经费集中于薄膜光伏。”此外,陈颉曾向记者介绍道,“在德国,所有的薄膜光伏企业都享有电费补贴,但晶硅类企业却不享受。而德国政府自2011年9月恢复了对效率在11.6%以上的薄膜硅太阳能电池、效率在13.8%以上的铜铟镓硒太阳电池和效率在15%以上的碲化镉薄膜太阳能电池实施银行贷款补贴。”
  
  竞争将拉开序幕
  
  不论如何,种种因素促使薄膜,尤其是铜铟镓硒在若干年后于神州大地上赢得了数百亿元资金的青睐。据《证券日报》记者粗略整理,仅上述提及几个项目投资总额就已达到200亿元,其中中建材安徽蚌埠项目计划投资14.3亿欧元,约合人民币111亿元;而重庆神华项目总投资则将达到75亿元。可想而知,一场围绕铜铟镓硒的“竞争”,将在中国拉开序幕。
  
  那么,上文提及的“大玩家”们,目前都处在怎样的竞争格局之中呢?
  
  从技术角度来看,据了解,凯盛科技旗下德国Avancis公司生产的CIGS(玻璃基)薄膜太阳能全尺寸冠军组件,有效面积光电转换效率达到了16.4%;而与神华合作的德国Manz,其CIGS薄膜太阳能芯片的量产转换效率也达到了16%。
  
  而作为中国发展薄膜太阳能技术的“鼻祖”,公开的数据显示,汉能Solibro玻璃基CIGS薄膜太阳能量产冠军组件效率达到16.97%(有效面积17.92%),为共蒸法CIGS组件量产世界纪录;GSE柔性CIGS薄膜太阳能芯片研发效率18.7%,量产冠军组件效率达到16.2%;其MiaSolé柔性CIGS薄膜太阳能芯片当前的研发效率已达到19.4%,量产冠军组件效率也达到了18%,为目前全球溅射法CIGS柔性组件最高效率。
  
  “从目前来看,在足以影响产业格局的几家中,神华、中建材发展铜铟镓硒都是采用玻璃基的,这点上无形中使其丧失了薄膜太阳能的‘柔性’优势(更好地与建筑、汽车等结合。)”一位业内人士向《证券日报》记者表示,“相比之下,汉能在铜铟镓硒上的技术储备更为全面,尤其是在他的GSE和MiaSolé柔性薄膜上。但这并不意味着神华、中建材未来不会关注‘柔性’化的发展。”
  
  此外,与单多晶不同,所谓铜铟镓硒薄膜太阳能电池,是指使用化学物质Cu(铜)、In(铟)、Ga(镓)、Se(硒)通过共蒸发或后硒化工艺在衬底上形成吸收层的太阳能电池技术。在上述重庆神华不愿具名人士看来,目前,不论“共蒸发”还是“后硒化”其本质都是一样的,“应该说,两种生产环节上的不同,并没有为任何一方带来可以制胜的优势。”
  
  相关阅读
  
  铜铟镓硒薄膜太阳能电池技术白皮书
  
  铟镓硒(CIGS):一种低成本高效率光伏技术
  
  采用CIGS吸收层的光伏模组可以高效的将光能直接转换为电能。在光伏技术领域具有重要的地位,目前小面积电池的研发效率世界纪录达到21.7%,组件效率达到16.5%。基于目前小电池的研究进展,未来小组件的效率可达到21%,全面积组件有望达到18%的效率。低成本CIGS光伏模组可以使度电成本低于€0.05/kWh,并为降低CO2排放量做出重要贡献。
  
  产品和技术展望
  
  CIGS模组产品和设计的多样性为未来光伏能源的发展提供了多种可能。CIGS玻璃-玻璃产品可应用于光伏电站、屋顶、建筑表面。目前,柔性轻质CIGS模组的产品平均开口效率已超过16%,随着此类产品达到更高的效率,将开启新的规模化应用和市场。
  
  从长期发展来看,以CIGS作为底电池,与合适的宽带隙吸收层材料结合,形成叠层电池,可使太阳能电池效率超过30%。由此可见,CIGS电池不仅是一种高竞争力的光伏技术,它还具有进一步开发利用的潜力。
  
  CIGS模组的主要优势:高发电量和优异的户外性能
  
  因CIGS模组具有较低温度系数、良好的光谱响应以及较好的弱光性能,使其具有较高的发电性量,因此在大多数的气候条件下具有较低的度电成本(LCoE)。此外,薄膜组件设计基于集成的内联技术,可以从本质上降低其对阴影的敏感性。低温度系数、高的阴影遮挡容忍度、较好的弱光性能,也是BIPV应用中的关键需求。
  
  可持续发展:能耗低、能量偿还时间短、材料消耗少
  
  基于薄膜太阳能电池的本质特性-较短的能量偿还时间和最少的高纯度材料的应用-薄膜太阳能电池的发电成本可低于传统能源方式。若计算碳足迹,薄膜太阳能电池具有显著的优势,是一种真正的可持续发展能源。此外,在光伏组件达到寿命期后,其完整回收利用在技术上是完全可行的,未来可依据需求进行开发利用。基于以上原因,CIGS技术在光伏规模化应用方面是一种最具可持续性的解决方案。
  
  可信赖的产品可靠性
  
  基于刚性玻璃衬底的双玻铜铟镓硒组件,电池单元的电学互联由激光划刻形成一体化集成的串联结构,较之传统的串焊互联方式具有更卓越的可靠性。现今,大生产铜铟镓硒组件的可靠性已被大量的加速老化实验及长时间的实地测试数据证实,并具有独立测试机构的认证。
  
  吉瓦级的规模化生产能力
  
  当前最大的铜铟镓硒产能从百兆瓦到一吉瓦每年,存在于德国与日本。这些生产基地都以90%以上的产业价值链良率进行运营。目前全世界铜铟镓硒的总产能达2GW/年。虽然铜铟镓硒膜层的制备工艺在不同公司有所区别,但都表现出良好的产品性能。这表明铜铟镓硒光伏组件制造业已达到第一阶段的产业成熟度。即使使用了地壳稀缺元素铟,每年100GW的产能也不会对供应链造成挑战。这是由于技术的进步减少了铟的用量及铟元素的回收。技术研发的持续进展,在未来十年会发掘铜铟镓硒成本下降的更大潜力。
  
  生产成本
  
  今天铜铟镓硒光伏组件的生产成本几乎与晶硅太阳能组件相当,这还是在铜铟镓硒的生产规模及累计产出比晶硅太阳能产业小数倍的情况下比较。从2008到2014年,铜铟镓硒组件的全球出货量为3GW。这表明铜铟镓硒光伏产业处于产业认知曲线的起始端,如同平板显示及玻璃镀膜等相近似薄膜产业所经历的过程。大面积均匀镀膜、加速的工艺流程与更强大的铜铟镓硒镀膜设备相结合使150MW产能的制造成本有潜力达到0.4美元每峰瓦。
  
  值得指出的是,铜铟镓硒组件生产的设备投资包括从玻璃衬底输入到成品组件输出的完整的产业链。基于铜铟镓硒组件今天已达到的成绩,我们可以看到未来成本下降的巨大潜力。关键在于将实验室的小面积高光电转换效率转移应用于大生产。下一阶段成本持续下降的影响因素包括:组件效率的提升由14%到18%,规模效应带动的材料成本(BOM)下降,研发带动的成本下降(超薄吸收层,利用较低纯度的原材料),设备投资的下降,下一代设备带动的生产能力的改善(产能,良率及设备稼动率),生产能耗的降低及优化的基础设施。综合所有成本下降的因素,在吉瓦(GW)级规模,铜铟镓硒生产成本会实现25%至40%的进一步下降。

阅读下一篇文章

热点资讯

推荐图文