那么刚刚清洗完的组件,是不是就能毫无阻碍的吸收辐射了呢?
非常遗憾,并不是。
问题出在哪儿?
有人会指出,原因在于组件表面的玻璃!因为玻璃有透光率,实际上光不是100%透过了玻璃。这个回答正确了50%,但却没有说出问题的根源。
如果仅仅是因为透光率,组件在STC条件下进行功率测试的时候,光本身也是透过玻璃的,那么组件的标称功率按理说应该是考虑了玻璃的透光率的。
但是我们注意到,组件在测试时,测试的光都是垂直照射组件的,然而在实际工程中,光是以各种角度照射到组件表面的,垂直的情况只是其中极小的一部分。这就是问题的根源:入射角度。
光从空气中入射到玻璃、EVA以后才能到达电池片表面,这个过程中光从光疏介质进入到光密介质,如图1所示。在这种情况下光的透过率和反射率是随入射角i的变化而变化的:当入射角i为0时(垂直入射),光的透过率最大,反射率最低;而随着入射角i逐渐增大,光的透过率逐渐降低而反射率逐渐升高。我们称这种现象造成的辐射量损失为入射角损失,也称作IAM(IncidenceAngleModifier)损失。
随着入射角i从0°到90°,光在玻璃中的透过率变化曲线如图2所示,可以看到入射角在0~60°左右,透过率的下降还较为平缓;而入射角在80~90°时,光的透过率近乎于直线下降。不过好在如此大的入射角一般出现在早晚辐射量较低的时候,所以从全年来看,入射角的变化对光伏组件的辐射吸收量没有造成非常严重的影响,但却也没有低到可以忽略的地步。
对于常规固定式支架最佳倾角安装的光伏组件,入射角损失一般在1%~3%左右。因为随着纬度升高,一年之中太阳的高度角会整体降低,从而使得入射角偏大的时间增多,所以一般高纬度地区的入射角损失高于低纬度地区。而对于跟踪式支架,由于其在1~2个轴的方向上跟踪着太阳,能有有效的减小入射角度,所以其入射角损失也普遍低于固定式支架。
但无论如何,入射角损失是光伏系统发电量估算中不可忽视的一部分,建议在计算光伏系统发电量时,都结合项目情况采用PVsyst等专业软件对入射角损失进行分析,以便能够更精确的估算发电量。